Chương IV : Biểu thức đại số

NH

Chứng minh A=2^2^2n+5 chia hết cho 7(n lớn hơn hoặc=0)

NT
19 tháng 1 2021 lúc 21:35

Ta có: \(A=2^{2^{2n}}+5\)

\(=2^{4n}+5\)

\(=2^{\left(3+1\right)\cdot n}+5\)

\(=2^{B\cdot\left(3+1\right)}+5\)

\(=2^{3k+1}+5\)

\(=8^k\cdot2-2+7\)

\(=2\cdot\left(8^k-1^k\right)+7\)

mà \(2\cdot\left(8^k-1\right)⋮2\left(8-1\right)=2\cdot7\)

và \(7⋮7\)

nên \(2\cdot\left(8^k-1^k\right)+7⋮7\)

hay \(A⋮7\)

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NT
Xem chi tiết
TP
Xem chi tiết
PN
Xem chi tiết