PA

Chứng minh \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)không là số tự nhiên

TT
1 tháng 1 2016 lúc 22:14

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)

Áp dụng BĐT ta có :

\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2500}}=2\left(\sqrt{2501}-\sqrt{2500}+\sqrt{2500}-\sqrt{2499}+....+\sqrt{2}-\sqrt{1}\right)\)

                                                                       \(=2\left(\sqrt{2501}-1\right)>2\left(\sqrt{2500}-1\right)=2.49=98\) (1)

\(\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n-1}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

ÁP dụng BĐT ta có :

\(A-1<2\left(\sqrt{2500}-\sqrt{2499}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-1\right)=2\left(\sqrt{2500}-1\right)=98\)

=> A  < 98 + 1 =99  (2)

Từ (1) và (2) => 98 < A < 99 

=> A không thể là số tự nhiên 

 

\(A<2\left(\sqrt{2500}-\sqrt{2499}+...+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}+\sqrt{1}-0\right)\)

   

Bình luận (0)
NK
1 tháng 1 2016 lúc 21:46

Vì 

\(\frac{1}{\sqrt{2}};\frac{1}{\sqrt{3}};\frac{1}{\sqrt{4}}....\) đều là số vô tỉ

Mà 1 là số hữu tỉ

=>\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\) là một số vô tỉ 

Hay A ko phải là 1 số tự nhiên

Tick cho mình nha bạn.Nhân dịp năm mới chúc bạn mạnh khoẻ,vui vẻ,học giỏi nha.

Còn nhớ tui là ai nữa ko bạn???

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
PA
Xem chi tiết
MV
Xem chi tiết
DH
Xem chi tiết
NA
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
NA
Xem chi tiết