Đề phải cho n thuộc N sao nha bạn
Có :
A = n^4+4n^3+6n^2+4n+1+n^4+1
= 2n^4+4n^3+6n^2+4n+2
=> A/2 = n^4+2n^3+3n^2+2n+1
= (n^4+2n^3+n^2)+(2n^2+2n)+1
= (n^2+n)^2+2.(n^2+n).1+1 = (n^2+n+1)^2
=> A chia hết cho (n^2+n+1)^2
Mà n thuộc N sao nên n^2+n+1 > 1
=> ĐPCM
Tk mk nha
\(A=n^4+4n^3+6n^2+4n+1+n^4+1\)
\(A=2n^4+4n^3+6n^2+4n+2\)
\(A=2\left(n^4+2n^3+3n^2+2n+1\right)\)
\(A=2\left(n^2+n+1\right)^2⋮\left(n^2+n+1\right)^2\)(là số chính phương) (đpcm)
(Áp dụng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\))