PN

Chứng minh A không chia hết cho 7 :A= 2+2^2+2^3+2^4+........+2^99+2^100

H24
15 tháng 10 2018 lúc 18:08

Đáng ra đề phải là chứng minh A chia hết cho 7 mới đúng nhé!

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^5\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{98}\right)⋮7^{\left(đpcm\right)}\)

Bình luận (0)