Ta có:
51n=...1 (1)
47102=47100.472
=474.25x(...9)
=(...1)25x(...9)
=(...1)x(...9)
=...9 (2)
Từ (1) và (2)
=> A=...1 + ...9
=> A=...0
Nên A có chữ số tận cùng là 0
Hay A chia hết cho 10.
Vậy A chia hết cho 10 (đpcm)
Đúng 0
Bình luận (0)
+ 51n có chữ số tân cùng là 1 với mọi n thuộc N
+ 47102 = 472 .(474)25 =(...9).(...1) = (...9)
=> A =51n + 47102 = (...1) + (...9) = ( ....0) => A có chữ số tân cùng là 0 => A chia hết cho 10
Đúng 0
Bình luận (0)