Theo câu ta có:
= |√3 - 1| - √3 = √3 - 1 - √3
= -1 = VP (vì √3 - 1 > 0) (đpcm)
Theo câu ta có:
= |√3 - 1| - √3 = √3 - 1 - √3
= -1 = VP (vì √3 - 1 > 0) (đpcm)
Chứng minh \(\sqrt{1^3+2^3+3^3+4^3}=1+2+3+4\)
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
\(M=\frac{2^3-1}{2^3+1}.\frac{3^3-1}{3^3+1}.\frac{4^3-1}{4^3+1}....\frac{100^3-1}{100^3+1}\)
CHỨNG MINH M> 2/3
Cho \(x=\dfrac{\sqrt{2}-\sqrt{1}}{1+\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{2+\sqrt{3}}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{100}-\sqrt{99}}{99+100}\). Chứng minh \(x< \dfrac{1}{2}\)
Chứng minh rằng
1/2+1/3√2+1/4√3+......+1/(n+1)√n <2
Cho \(x=\dfrac{\sqrt{2}-1}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{225}-\sqrt{224}}{224+225}\) . Chứng minh rằng \(x< \dfrac{7}{15}\) .
chứng minh \(\frac{\sqrt[4]{5}-1}{\sqrt[4]{5}+1}=\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
cho P=1*2*3+2*3*4+...+2018*2019*2020 chứng minh rằng 4P+1 là số chính phương
Chứng minh rằng:
a) \(\frac{2^3-1}{2^3+1}.\frac{3^3-1}{3^3+1}...\frac{n^3-1}{n^3+1}>\frac{2}{3}\)
b) \(\frac{1}{1^4+4}+\frac{1}{3^4+4}+...+\frac{2n+1}{\left(2n+1\right)^4+4}< \frac{1}{4}\)