Ta có: VT = (√3 - 1)2 = (√3)2 - 2√3 + 1
= 3 - 2√3 + 1 = 4 - 2√3 = VP
Vậy (√3 - 1)2 = 4 - 2√3 (đpcm)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta có: VT = (√3 - 1)2 = (√3)2 - 2√3 + 1
= 3 - 2√3 + 1 = 4 - 2√3 = VP
Vậy (√3 - 1)2 = 4 - 2√3 (đpcm)
Chứng minh \(\sqrt{1^3+2^3+3^3+4^3}=1+2+3+4\)
1) Chứng minh đẳng thức \(\left(\frac{3\sqrt{2}-\sqrt{6}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}=-\frac{4}{3}\)
2) Chứng minh \(\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}=1\)
\(M=\frac{2^3-1}{2^3+1}.\frac{3^3-1}{3^3+1}.\frac{4^3-1}{4^3+1}....\frac{100^3-1}{100^3+1}\)
CHỨNG MINH M> 2/3
Cho \(x=\dfrac{\sqrt{2}-\sqrt{1}}{1+\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{2+\sqrt{3}}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{100}-\sqrt{99}}{99+100}\). Chứng minh \(x< \dfrac{1}{2}\)
Cho \(x=\dfrac{\sqrt{2}-1}{1+2}+\dfrac{\sqrt{3}-\sqrt{2}}{2+3}+\dfrac{\sqrt{4}-\sqrt{3}}{3+4}+...+\dfrac{\sqrt{225}-\sqrt{224}}{224+225}\) . Chứng minh rằng \(x< \dfrac{7}{15}\) .
Chứng minh rằng
1/2+1/3√2+1/4√3+......+1/(n+1)√n <2
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
chứng minh
\(\dfrac{3}{2}\)\(\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}\)
rút gọn
D=\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}\)\(-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
chứng minh rằng với số tự nhiên n,n lớn hơn 4 ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}< 1\)
cho P=1*2*3+2*3*4+...+2018*2019*2020 chứng minh rằng 4P+1 là số chính phương