`2 + 2^2 + 2^3 + 2^4 +2^5 + 2^6 + ... + 2^59 + 2^60`
`= (2 + 2^2) + (2^3 + 2^4) + ... + (2^59 + 2^60)`
`= 1 . (2 + 2^2) + 2^2 . (2 + 2^2) + ... + 2^58 . (2 + 2^2)`
`= 1 . 6 + 2^2 . 6 + ... + 2^58 . 6`
`= 6 . (1 + 2^2 +... + 2^58)`
`= 2 . 3 . (1 + 2^2 + ... + 2^58)\vdots 3 (đpcm)`
`2 + 2^2 + 2^3 + 2^4 + .. + 2^{59} + 2^{60}`
Đặt biểu thức trên là `A` , ta có :
`A = (2+2^2) + (2^3 + 2^4) + ... + (2^{59} + 2^{60}) vdots 3`
`A = 1 . (2+4) + 2^2 . (2 + 4) + ... + 2^{58} . (2+4) vdots 3`
`A = (1+2^2 + ... + 2^{58}) . 6 vdots 3`
Vì `6 vdots 3` nên
`=> A vdots 3`