NT

Chứng minh : \(2016^{2016}+2016^{2017}\)chia hết cho 2017

ND
19 tháng 12 2016 lúc 21:58

Ta có: 20162016 + 20162017 = 20162016.(1+2016) = 20162016 . 2017 chia hết chi 2017

Bình luận (0)
TN
19 tháng 12 2016 lúc 22:51

Giả sử 20162016 + 20162017 không chia hết cho 2017 
Ta có : 20162  = 4064256 = 2015 x 2017 + 1 
=> 2016=  1 ( mod 2017 ) 
=> (20162)^1008 = 11008 ( mod 2017 ) 
=> 20162016 = 1 ( mod 2017 ) 
Ta lại có : 20162016 x 2016 = 1 x 2016  ( mod 2017 )
=> 20162017 = 2016 ( mod 2017 ) 
Nên 20162016 + 20162017 = 0 ( mod 2017 ) 
Vậy điều đã giả sử là sai 
=> 20162016 x 20162017 chia hết cho 2017 . 
mình nha . Yêu , chúc bạn học thật tốt 
 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NL
Xem chi tiết
DQ
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết