Số hs Giỏi chiếm :
8 : 40 = 20 % ( cả lớp )
Số hs TB chiếm :
12 : 40 = 30 % ( cả lớp )
Số hs Khá chiếm :
20 : 40 = 50 % ( cả lớp )
Đ/s: Giỏi : 20 % cả lớp
TB : 30 % cả lớp
Khá : 50 % cả lớp
Số hs Giỏi chiếm :
8 : 40 = 20 % ( cả lớp )
Số hs TB chiếm :
12 : 40 = 30 % ( cả lớp )
Số hs Khá chiếm :
20 : 40 = 50 % ( cả lớp )
Đ/s: Giỏi : 20 % cả lớp
TB : 30 % cả lớp
Khá : 50 % cả lớp
1. Chứng minh a + 4b = 1 thì 5( a2 + 4b2 ) >= 1
2. Chứng minh x + y = 1 thì 2 ( x2 + y2 ) >= 1
3 Cho a = b + 1 .Chứng minh a > b
Mn giúp mk vs
1 a) Chứng minh( x^2+y^2+5)/2 bé hơn hoặc bằng x+2y
b) Cho a, b biết : a+b=1. Chứng minh 1/a+1 + 1/b+1 bé hơn hoặc bằng 4/3
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
1. Chứng minh :3^n >= n^3 với mọi n thuộc N*
2. Cho a+b+c=1. Chứng minh: a^2 + b^2 + c^2 >=1/3
cho A=1/11+1/12+.................+1/70
chứng minh A<5/2
chứng minh A>4/3
a,Cho A +B lớn hơn hoặc bằng 1.Chứng minh A^2 + B^2 lớn hơn hoặc bằng 1
b,Cho x^2 + y^2 =1.Chứng minh (x+y)^2 nhỏ hơn hoặc bằng 2
Mọi người giúp em làm bài này với, em đang cần gấp. Cảm ơn
Câu 2: Chứng minh x^3k+1 + x^2 + 1 chia hết cho x^2+x+ I.
Câu 3: Chứng minh x^3k+2 + x + 1 chia hết cho x^2 + x + 1.
Câu 4: Chứng minh x^6 − 1 chia hết cho x^4 +x2 + 1.
Bài 1:Cho tam giác ABC vuông tại A có AM là đường trung tuyến.Gọi N là trung điểm của AC
1)Chứng minh \(MN\perp AC\)
2)Tam giác AMC là tam giác gì?Vì sao?
3)Chứng minh 2AM=BC
Bài 2:Cho tam giác ABC nhọn có 2 đường cao BD và CE.Gọi M,N là trung điểm của BC và DE
1)Chứng minh \(DM=\dfrac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN \(\perp\) DE
Bài 3:Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC.Gọi M là trung điểm của BC,BD cắt AM tại I
1)Chứng minh ME//BD
2)Chứng minh I là trung điểm của AM
3)Chứng minh ID=\(\dfrac{1}{4}\) BD
Bài 4:Cho tam giác ABC có AM là trung tuyến.Lấy D thuộc AC sao cho \(AD=\dfrac{1}{2}DC\).Kẻ ME//BD (E thuộc CD), BD cắt AM tại I
1)Chứng minh AD=DE=EC
2)Chứng minh I là trung điểm AM
Cho 3 số dương a,b,c<2. Chứng minh ít nhất một trong các bất đẳng thức sau là sai: a(2-b)>1; b(2-c)>1; c(2-a)>1.
(Gợi ý: Chứng minh bằng phương pháp phản chứng)
a)chứng minh rằng : với mọi số tự nhiên n : (x+1)^4n+2 +(x-1)^4n+2 chia hết cho x^2 +1
b) chứng minh rằng với mọi số tự nhiên n : ( x^n -1) ( x^n+1 -1) chia hết cho (x+1)(x-1)