Violympic toán 9

BA

Cho(O:R) và dây cung AH<R. Qua H kẻ đường d tiếp xúc với (O). Vẽ (A;R) cắt d tại B và C sao cho H nằm giữa. Vẽ HM, HN vuông góc với OB,OC.

1) C/m OM.OB=ON.OC và MN luôn đi qua điểm cố định.

2) C/m OB.OC=2R^2

AH
2 tháng 1 2021 lúc 17:15

Lời giải:

1. 

Vì $BC\equiv d$ là tiếp tuyến của $(O)$ nên $OH\perp BC$

$\Rightarrow \triangle BHO$ vuông tại $H$ và tam giác $CHO$ vuông tại $H$

Tam giác $HBO$ vuông có đường cao $HM$ nên áp dụng hệ thức lượng trong tam giác vuông có $HO^2=OM.OB(1)$

Hoàn toàn tương tự, với tam giác vuông $CHO$ có đường cao $HN$ có: $HO^2=ON.OC(2)$

Từ $(1);(2)\Rightarrow OM.OB=ON.OC$ (đpcm)

------------

Vì $OM.OB=HO^2=OA^2\Rightarrow \frac{OM}{OA}=\frac{OA}{OB}$

$\Rightarrow \triangle MOA\sim \triangle AOB$ (c.g.c)

$\Rightarrow \widehat{MAO}=\widehat{ABO}=\widehat{AOB}=\widehat{AOM}$ (do $AB=AO$)

$\Rightarrow \triangle AMO$ cân tại $M$

$\Rightarrow AM=OM$

Hoàn toàn tương tự: $NA=NO$

Do đó $MN$ là đường trung trực của $AO$ nên $MN$ luôn đi qua trung điểm của $AO$. $A,O$ cố định nên trung điểm của nó $I$ cũng cố định. Vậy $MN$ luôn đi qua điểm cố định (đpcm)

2. 

Vì $OM.OB=ON.OC$ nên $\triangle OMN\sim \triangle OCB$ (c.g.c)

$\Rightarrow \widehat{OMN}=\widehat{OCB}$ hay $\widehat{OMI}=\widehat{OCH}$ 

$\Rightarrow \triangle OMI\sim \triangle OCH$ (g.g)

$\Rightarrow \frac{OM}{OC}=\frac{OI}{OH}=\frac{OA}{2OH}=\frac{1}{2}$

$\Rightarrow 2OM=OC$

$\Rightarrow OB.OC=2OM.OB=2.OH^2=2R^2$ (đpcm)

 

 

 

Bình luận (0)
AH
2 tháng 1 2021 lúc 17:21

Hình vẽ:

undefined

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
DA
Xem chi tiết
RD
Xem chi tiết
NL
Xem chi tiết
VA
Xem chi tiết
TT
Xem chi tiết
EO
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết