Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho \(n\inℕ^∗\)CMR
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
Cho \(n\inℕ^∗\) CMR
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=1+\frac{1}{n}-\frac{1}{\left(n+1\right)}\)
cho f(n)=(n2 + n +1 )2 +1 với n thuộc N* . Đặt \(p_n=\frac{f_{\left(1\right)}\cdot f_{\left(3\right)}\cdot f_{\left(5\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n-1\right)}}{f_{\left(2\right)}\cdot f_{\left(4\right)}\cdot f_{\left(6\right)}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot f_{\left(2n\right)}}\)
chứng minh rằng : P1 + P2 +P3 +................+ Pn <1/2
CMR:
\(\left(n+1\right)\left(n+2\right)...\left(n+n\right)⋮2^n\left(\forall n\in N\cdot\right)\)
CMR: \(\left|\sin1\right|+\left|\sin2\right|+...+\left|\sin3n\right|>\frac{8}{5}n,\forall n\inℕ^∗\)
\(n\ge3;n\inℕ\)
CMR:
\(\frac{1}{a^n\left(b+c\right)}+\frac{1}{b^n\left(c+a\right)}+\frac{1}{c^n\left(a+b\right)}\ge\frac{3}{2}\)
CMR:nếu \(1+2^n+4^n\) là số nguyên tố \(\left(n\inℕ^∗\right)\) thì n=3k \(\left(k\inℕ^∗\right)\)
cho \(n\inℕ\)
CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+....\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Cho \(M_1=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\left(\sqrt{b}+\sqrt{c}-\sqrt{a}\right)^2\left(\sqrt{c}+\sqrt{a}-\sqrt{b}\right)^2\)
\(M_2=\left(\sqrt[4]{a}+\sqrt[4]{b}-\sqrt[4]{c}\right)^4\left(\sqrt[4]{b}+\sqrt[4]{c}-\sqrt[4]{a}\right)^4\left(\sqrt[4]{c}+\sqrt[4]{a}-\sqrt[4]{b}\right)^4\)
\(...\)
\(M_n=\left(\sqrt[2^n]{a}+\sqrt[2^n]{b}-\sqrt[2^n]{c}\right)^{2^n}\left(\sqrt[2^n]{b}+\sqrt[2^n]{c}-\sqrt[2^n]{a}\right)^{2^n}\left(\sqrt[2^n]{c}+\sqrt[2^n]{a}-\sqrt[2^n]{b}\right)^{2^n}\)
Với \(n\inℕ^∗\). CMR: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le M_1\le M_2\le...\le M_n\le abc\)