NH

Chọn và giải thích tại sao lại chọn đáp án đó ạ. Em xin cảm ơn

TC
12 tháng 2 2024 lúc 21:39

28D

HD: ĐK: \(m\left(m-2\right)\ge0\)

 \(2^{x_1}.2^{x_2}=2m\). Mà theo gt thì \(x_1+x_2=3\) nên \(2^3=2m\Leftrightarrow m=4\left(tm\right)\)

37B

HD: \(a^xb^{x^2-2}=1\Leftrightarrow a^x=b^{2-x^2}\)

Do \(a,b>1\) nên \(xlog_ba=2-x^2\)\(\Leftrightarrow log_ba=\dfrac{2-x^2}{x}\)

Do đó

\(\dfrac{2-x_1^2}{x_1}=\dfrac{2-x_2^2}{x_2}>0\)

Đặt \(x_1+x_2=t\) thì ta có:

\(\left\{{}\begin{matrix}x_1x_2=-2\\t< 0\end{matrix}\right.\)

Do đó: \(T=\dfrac{4}{t^2}-5t=\dfrac{4}{t^2}+\left(-\dfrac{5t}{2}\right)+\left(-\dfrac{5t}{2}\right)\ge3\sqrt[3]{\dfrac{4}{t^2}.\left(-\dfrac{5t}{2}\right)^2}=3\sqrt[3]{25}\)

Đẳng thức xảy ra\(\Leftrightarrow t=-\dfrac{2}{\sqrt[3]{5}}\Rightarrow\left\{{}\begin{matrix}x_1=...\\x_2=...\end{matrix}\right.\)

38. Không có đáp án đúng

HD: ĐK:\(\left[{}\begin{matrix}m\ge-6+18\sqrt{3}\\m\le-6-18\sqrt{3}\end{matrix}\right.\) 

Ta có: \(\left\{{}\begin{matrix}3^{x_1}.3^{x_2}=243\left(1\right)\\3^{x_1}+3^{x_2}=m+6\left(2\right)\end{matrix}\right.\)

Từ (1)\(\Rightarrow x_1+x_2=5\)

Kết hợp với gt, ta có:

\(x_1.x_2=7\)\(\Rightarrow\) Không có x thoả mãn, đề sai

(Đề có thể sửa lại là \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{1}{x_1x_2}=1\), khi đó \(x_1=2;x_2=3;m=30\)

là hợp lý)

39C

HD: Gt \(\Rightarrow3^x-3^{-x}=2cos\left(nx\right)\) (*)

PT đã cho tđ vs:

 \(9^x+\dfrac{1}{9^x}=4+2.\left(2cos^2\left(nx\right)-1\right)=4cos^2\left(nx\right)+2\)

\(\Leftrightarrow\left(3^x-3^{-x}\right)^2=4cos^2\left(nx\right)\)\(\Leftrightarrow\left[{}\begin{matrix}3^x-3^{-x}=2cos\left(nx\right)\\3^x-3^{-x}=-2cos\left(nx\right)\end{matrix}\right.\)

Do pt (*) có 2023 nghiệm nên pt đã cho có 2.2023=4046 nghiệm

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
TT
Xem chi tiết
PT
Xem chi tiết
CC
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
DN
Xem chi tiết