Hàm số bậc nhất y = a x + b xác định với mọi giá trị của x thuộc R và có tính chất sau:
- Đồng biến trên R nếu a > 0
- Nghịch biến trên R nếu a < 0
Đáp án cần chọn là: B
Hàm số bậc nhất y = a x + b xác định với mọi giá trị của x thuộc R và có tính chất sau:
- Đồng biến trên R nếu a > 0
- Nghịch biến trên R nếu a < 0
Đáp án cần chọn là: B
Chọn đáp án đúng nhất. Với a ≠ 0 hàm số y = a x + b là hàm số:
A. Bậc nhất
B. Hàm hằng
C. Đồng biến
D. Nghịch biến
Cho hàm số y = ( \(m^2\) + 2021 ) \(x^2\). Kết luận nào sau đây đúng?
A. Hàm số nghịch biến khi x <0
B. Hàm số đồng biến khi x <0
C. Hàm số nghịch biến khi x > 0
D. Hàm số đồng biến khi x \(\le\) 0
Hãy vẽ đồ thị của các hàm số y = 2 x 2 , y = - 2 x 2 . Dựa vào đồ thị để trả lời các câu hỏi sau:
a) Nếu a > 0 thì hàm số y = a x 2 đồng biến khi nào? Nghịch biến khi nào?
Với giá trị nào của x thì hàm số đạt giá trị nhỏ nhất? Có giá trị nào của x để hàm số đạt giá trị lớn nhất không?
Nếu a < 0 thì hàm số đồng biến khi nào? Nghịch biến khi nào? Với giá trị nào của x thì hàm số đạt giá trị lớn nhất? Có giá trị nào của x để hàm số đạt giá trị nhỏ nhất không?
b) Đồ thị của hàm số y = a x 2 có những đặc điểm gì (trường hợp a > 0 , trường hợp a < 0)
Cho hàm số y=(2-9m)x2 Tìm m để: a) hàm số đồng biến khi x > 0 b) hàm số nghịch biến khi x < 0
Cho hàm số y = -3 x 2 . Khẳng định nào sau đây là đúng?
A) Khi 0 < x < 15, hàm số đồng biến
B) Khi -1 < x < 1, hàm số đồng biến
C) Khi -15 < x < 0, hàm số đồng biến
D) Khi -15 < x < 1, hàm số đồng biến
Chứng minh rằng hàm số bậc nhất y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0
Cho hàm số Tìm m để: a) hàm số đồng biến khi x > 0 b) hàm số nghịch biến khi x < 0
Cho hàm số y = ax = b (a ≠ 0).
a) Khi nào thì hàm số đồng biến?
b) Khi nào thì hàm số nghịch biến?
Hàm số y=ax+b . Mệnh đề nào sai ?
A : Đồng biến khi a>0
C: Đồng biến khi a bé hơn hoặc = 0
D: NGhịch biến khi a>0
B: Luôn cắt trục tung với mọi a