TV

 

Cho\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)và \(x^2+y^2=1\)

CMR:

a) \(bx^2=ay^2\)

b) \(\frac{x^{2010}}{a^{1005}}+\frac{y^{2010}}{b^{1005}}=\frac{2}{\left(a+b\right)^{1005}}\)

ai giải đúng và sớm nhất cho 1 tk vip 6 tháng ♫♥♪

DT
7 tháng 7 2016 lúc 19:55

a)Ta có

\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)

\(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Rightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\)

\(\Rightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+y^2-2x^2y^2\right)ab\)

\(\Rightarrow x^4ab+x^4b^2+y^4ab+y^4a^2=x^4ab+y^4ab+2x^2y^2ab\)

\(\Rightarrow x^4b^2+y^4b^2-2x^2y^2ab=0\)

\(\Rightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Rightarrow x^2b-y^2a=0\)

\(\Rightarrow x^2b=y^2a\left(dpcm\right)\)

b) từ kết quả câu a) ta suy ra dc

\(\frac{x^2}{a}=\frac{y^2}{b}\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)

Mà \(x^2+y^2=1\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1005}=\left(\frac{y^2}{b}\right)^{1005}=\frac{1^{1005}}{\left(a+b\right)^{1005}}\Rightarrow\frac{x^{2010}}{a^{1005}}=\frac{y^{2010}}{b^{1005}}=\frac{1}{\left(a+b\right)^{1005}}\)

\(\Rightarrow\frac{x^{2010}}{a^{1005}}+\frac{y^{2010}}{b^{1005}}=\frac{1}{\left(a+b\right)^{1005}}+\frac{1}{\left(a+b\right)^{1005}}=\frac{2}{\left(a+b\right)^{1005}}\left(dpcm\right)\)

Vầy đúng không nhỉ nếu đúng T I C K cho mình nha 

Ko biết có nhanh nhất ko nhưng dù sao cũng xong rồi

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
YT
Xem chi tiết
LH
Xem chi tiết
DT
Xem chi tiết
DT
Xem chi tiết
DL
Xem chi tiết
LU
Xem chi tiết
MN
Xem chi tiết
LM
Xem chi tiết