PN

Cho\(\frac{a}{b}=\frac{c}{d};\left(a,b,c,d,\right)\)chứng minh\(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

KT
17 tháng 10 2016 lúc 12:49

Vì \(\frac{a}{b}=\frac{c}{d}\) nên ad=bc và \(\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(1)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(2)

Từ (1) và (2), ta suy ra: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
AT
Xem chi tiết
EN
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết