\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\Rightarrow\left(a+c\right).\left(b-d\right)=\left(a-c\right).\left(b+d\right)\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\Rightarrow\left(a+c\right).\left(b-d\right)=\left(a-c\right).\left(b+d\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh ( a+ c ) X ( b - a ) = ( a - c ) X ( b +d )
1) So sánh
\(\frac{n+1}{n+2}và\frac{n}{n+3}\)
2)a) Cho \(\frac{a}{b}>\frac{c}{d}\)(b,d khác 0). Chứng minh rằng a x d > b x c
b) Cho a x d > b x c(b,d khác 0).Chứng minh rằng \(\frac{a}{b}>\frac{c}{d}\)
Giúp mình với, mình đang cần gấp
cho a,b,c,d>0 chứng minh \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge2\)
1, Chứng minh rằng \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
2, Tìm x và y biết \(\frac{x}{5}=\frac{y}{3}\)và x+y = 16
Cho: \(A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Chứng minh rằng: A không là số tự nhiên với a;b;c;d > 0
cho a, b, c, d là số nguyên dương
Chứng minh rằng : 1 \(1< \frac{a}{a+b+C}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Hãy chứng minh:
\(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Cho M =\(\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)
Chứng Minh : M không phải là số tự nhiên
cho các số hữu tỉ \(\frac{a}{b};\frac{c}{d}\)với b > 0 , d > 0
Chứng minh \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)