Phân thức đại số

TA

Cho\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

Chứng minh:\(\dfrac{1}{a^3+b^3+c^3}=\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\)

HH
21 tháng 12 2017 lúc 23:12

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

=>\(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

=> (bc+ac+ab)(a+b+c)=abc

=> abc+b2c+bc2+a2c+abc+ac2+a2b+ab2+abc=abc

=>abc+b2c+bc2+a2c+abc+ac2+a2c+ab2+abc-abc=0

=>(a2c+2abc+b2c)+(a2b+ab2)+(ac2+bc2)=0

=>c(a+b)2+ab(a+b)+c2(a+b)=0

=>(a+b)[c(a+b)+ab+c2]=0

=>(a+b)(ac+bc+ab+c2)=0

=>(a+b)[a(c+b)+c(b+c)]=0

=>(a+b)(c+b)(a+c)=0

=> a+b=0, c+b=0, a+c=0

nếu a+b=0=>a=-b

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{-b^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{1}{c^3}\)(1)

\(\dfrac{1}{a^3+b^3+c^3}=\dfrac{1}{-b^3+b^3+c^3}=\dfrac{1}{c^3}\) (2)

từ (1) và (2) suy ra đpcm

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
CT
Xem chi tiết
TB
Xem chi tiết
NM
Xem chi tiết
QN
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết
TM
Xem chi tiết