Phân thức đại số

VH

Bài 1: Cho \(\text{a+b+c=ab+bc+ac=abc}\) \(\ne\) \(0\)\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

Tính \(A=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Bài 2: Cho \(a,b,c\ne0\). CMR nếu \(x,y\) thỏa mãn :

\(\dfrac{a}{c}x+\dfrac{b}{c}y=\dfrac{b}{a}x+\dfrac{c}{a}y=\dfrac{c}{b}x+\dfrac{a}{b}y=1\)

thì \(\dfrac{a^2}{bc}+\dfrac{b^2}{ac}+\dfrac{c^2}{ab}=3\)

Bài 3: Cho \(ax+by+cz=0\)\(a+b+c=\dfrac{1}{2019}\)

Tính \(A=\dfrac{a^2x^2+b^2y^2+c^2z^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)


Các câu hỏi tương tự
DT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
QN
Xem chi tiết
NP
Xem chi tiết
NM
Xem chi tiết
PM
Xem chi tiết