bài 1 choa,b,c>0 CMR: \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{a+3c}{b+c}>=5\)
CHo 0<=a,b,c<=1 CMR a+b+c+1/abc>=1/a+1/b+1/c+abc
choa,b,c,d>0vaf abcd=1.CMR
a^2+b^2+c^2+d^2+a(b+c)+b(c+d)+d(c+a)>=10
cho ;b;c khác 0 thỏa mãn;
a+1/b= b+ 1/c =c+1/a. cmr abc=1 hoặc abc=-1
cho a,b,c>0; abc=1 CMR (a+b)(b+c)(c+a)>=2(1+a+b+c)
Bài5: cho a,b,c>0.CMR
1, 2/a+1/b >= 4/a+b
2, 1/a+1/b+1/c>= a/a+b+c
Bài 6: cho a,b>=0 cmr
1, a^3+b^4>=ab(a+b)
2, a^4+b^4>=ab(a^2+b^2)
3, a5+b5>=ab(a^3+b^3)
Bài 7 cho a,b,c>0 cmr
1/a^3+b^3+abc +1/b^3+c^3+abc+1/c^3+a^3+2 <1/abc
Bài 8cho a,b,c>0;abc=1
1, 1/a^3+b^3+2 +1/b^3+c^3+2 +1/c^3+a^3+2 =< 1
2,ab/a^5+b^5+ab +bc/b^5+c^5+bc + ca/c^5+a^5+ca =<1
cho (a+b+c)^2= a^2+b^2+c^2 và a,b,c # 0. CMR 1/a^2 + 1/b^2 + 1/c^2 = 3/abc
Cho a,b,c thỏa mãn điều kiện ab + bc + ca = abc avf a + b + c = 1 . CMR : (a-1)(b-1)(c-1) = 0
Cho a,b,c khác 0 t/m (a+b+c)^2=a^2+b^2+c^2.CMR: 1/a^3+1/b^3+1/c^3=3/abc