Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1
Tương tự;-1_<a,b,c_<1
Lấy(1)-(2) có
a2(1-a)+b2(1-b)+c2(1-c)=0 (3)
VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0 Nên từ (3) suy ra;
a2(1-a)=b2(1-b)=c2(1-c)=0
=>a,b,c hoặc bằng 0 hoặc bằng 1
Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0
=>a+b2+c3=0(đpcm)
Đúng 0
Bình luận (0)
Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1
Tương tự;-1_<a,b,c_<1
Lấy(1)-(2) có
a2(1-a)+b2(1-b)+c2(1-c)=0 (3)
VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0 Nên từ (3) suy ra;
a2(1-a)=b2(1-b)=c2(1-c)=0
=>a,b,c hoặc bằng 0 hoặc bằng 1
Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0
=>a+b2+c3=0(đpcm)
Đúng 0
Bình luận (0)