TN

Cho▵ABC cân tại A. Kẻ tia AH vuông góc với BC ( H thuộc BC)

a) Chứng minh▵AHB =▵AHC

b) Chứng minh HB = HC

c) Kẻ IH vuông góc với AB tại I, HK vuông góc với AC tại K. Chứng minh▵AIK là tam giác cân d) Chứng minh IK // BC e) Chứng minh AH là đường trung trực của đoạn thẳng IK

NN
6 tháng 4 2022 lúc 20:36

a) Ta xét ▵AHB và▵AHC, ta có

AH là cạnh chung

AC=AB ( vì tam giác cân tại A)

góc AHC = góc AHB là góc vuông (90 độ)

-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)

b) Ta có ▵AHB =▵AHC (cmt)

->HB=HC ( 2 cạnh tương ứng)

c) Ta xét ▵AKH và ▵AIH. Ta có: 

AH là cạnh chung 

góc AKH = góc AIK = 90 độ 

-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)

-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A

d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

Ta có AH là cạnh chung cùng vuông góc với IK và BC

-> IK // BC

e) Ta cho giao điểm của AH và IK là O 

Ta xét ▵AKO và ▵AIO

Ta có AK=AI (cmt)

Góc AOK = góc AOI = 90 độ

-> ▵AKO = ▵AIO

-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
TV
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết