Violympic toán 9

DF

choa, b, c dương thỏa mãn \(a+b+c=\dfrac{3}{2}\). Tìm GTNN của \(P=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4a^2}\)

NL
20 tháng 12 2020 lúc 17:43

Chắc là bạn ghi nhầm mẫu số cuối cùng

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(1+b\right)}{1+4a^2}\ge1+b-\dfrac{4a^2\left(1+b\right)}{4a}=1+b-a\left(1+b\right)\)

Tương tự: \(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(1+c\right)\) ; \(\dfrac{1+a}{1+4c^2}\ge1+a-c\left(1+a\right)\)

Cộng vế với vế:

\(P\ge3+a+b+c-\left(a+b+c\right)-\left(ab+bc+ca\right)\)

\(P\ge3-\left(ab+bc+ca\right)\ge3-\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
DF
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết