Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

KN

cho0<=a<=1  c/m:   \(\sqrt{a^2-a+1}+\sqrt{a-a^2+1}\le2\)

TL
10 tháng 7 2015 lúc 22:43

Bình phương 2 vế ta có:

\(a^2-a+1+a-a^2+1+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)

<=>  \(2+2\sqrt{\left(a^2-a+1\right)\left(a-a^2+1\right)}\le4\)

<=> \(\sqrt{\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)}\le1\) <=> \(\left(1+\left(a^2-a\right)\right)\left(1-\left(a^2-a\right)\right)\le1\)

<=> 1 - (a2 - a)2 \(\le\) 1 <=> (a2 - a)2 \(\ge\) 0 : Luôn đúng với mọi a => Bất đẳng thức đầu đúng với mọi 0 =< a <= 1

Dấu = xảy ra <=> a2 - a = 0 <=> a = 0 hoặc a = 1

Bình luận (0)
ML
10 tháng 7 2015 lúc 23:26

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\), Dấu "=" xảy ra khi x = y

Áp dụng bất đẳng thức trên ta có:

\(VT^2=\left(\sqrt{a^2-a+1}+\sqrt{a-a^2+1}\right)\le2\left(a^2-a+1+a-a^2+1\right)=4\)

\(\Rightarrow VT\le2=VP\)(đpcm)

Dấu "=" xảy ra khi \(\sqrt{a^2-a+1}=\sqrt{a-a^2+1}\Leftrightarrow a^2-a=a-a^2\Leftrightarrow2a\left(a-1\right)=0\Leftrightarrow a=0\text{ hoặc }a=1\)

 

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
PL
Xem chi tiết
H24
Xem chi tiết
QT
Xem chi tiết
LD
Xem chi tiết
TK
Xem chi tiết
NL
Xem chi tiết
DT
Xem chi tiết
LD
Xem chi tiết