Để y thuộc Z => x + 2 chia hết cho 2x + 1
=> 2(x + 2) chia hết cho 2x + 1
=> 2x + 4 chia hết cho 2x + 1
=> 2x + 1 + 3 chia hết cho 2x + 1
Vì 2x + 1 chia hết cho 2x + 1 => 3 chia hết cho 2x + 1
=> 2x + 1 thuộc Ư(3)
=> 2x + 1 thuộc {-3; -1; 1; 3}
=> 2x thuộc {-4; -2; 0; 2}
=> x thuộc {-2; -1; 0; 1}
(*) Thử lại:
+) Với x bằng -2 thì x + 2 chia hết cho 2x + 1 (chọn)
+) Với x bằng -1 thì x + 2 chia hết cho 2x + 1 (chọn)
+) Với x bằng 0 thì x + 2 chia hết cho 2x + 1 (chọn)
+) Với x = 1 thì x + 2 chia hết cho 2x + 1 (chọn)
Vậy có 4 giá trị của x thuộc Z là -2; -1; 0; 1 để y thuộc Z