cho x,y,z>0 va x^3+y^3+z^3=3.cmr xy/z+yz/x+zx/y>3
chox,y,z>0 va x^3+y^3+z^3=3.cmr xy/z+yz/x+zx/y>3
Cmr: x2+y2+z2-xy-yz-zx=(x-y)2+(y-z)2+(z-x)2 / 2 và x2+y2+z2-xy-yz-zx=0 khi nào.
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
cho x,y,z >0 thỏa mãn x+y+z=9 Tìm max A=xy/x+y + yz/y+z + zx/z+x
với x,y là các số thực dương lớn hơn 0.
(xy+yz+zx)2
cho x,y,z khác 0 và x+y+z=0, xy+yz+zx=3xyz Tính giá trị biểu thức A= (yz-x)/(x^3yz)+(xz-y)/(xy^3z)+(xy-z)/(xyz^3)
=))) Giúp tớ với các bạn nhỏ ơiii
1) Cho \(n\ge2\)là số nguyên . CMR \(2^{2^{n+1}}+2^{2^n}+1\)có ít nhất 3 ước nguyên dương lớn hơn 1
2) Cho a,b,c thỏa a + b + c = 0 . CMR \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
3) Cho x , y , z thỏa xy + yz + zx = 0 và x + y + z = -1 . Tính \(A=\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
- FanMixigaming -
\(Cho\)\(x,y,z>0\)\(TM\)\(xy+yz+zx=1\)
\(CMR\)\(\frac{1}{1+xy+z^2}+\frac{1}{1+yz+x^2}+\frac{1}{1+zx+y^2}\le\frac{9}{5}\)