cho x ,y ,z khác 0 thỏa mãn điều kiện : x+y+z=2015 và 1/x+1/y+1/z=2015
chứng ming rằng tồn tại ít nhất một trong ba số x,y,z bằng 2015
cho 3 số x, y, z khác 0 thõa mãn\(\hept{\begin{cases}x+y+z=2015\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\end{cases}}\)
Chứng minh rằng trong 3 số x, y, z tồn tại 2 số đối nhau
cho x*y*z=1 và x+y+z=1/x+1/y+1/z. CMR trong 3 số x,y,z tồn tại một số =1
giúp mình với
cho các số x,y,z thỏa mãn x+y+z=1 và x^3+y^3+z^3=1. Tính x^2015+y^2015+z^2015
cho các số x,y,z thỏa mãn x+y+x=1 ; x^3+y^3+z^3 =1.Tính A=x^2015+y^2015+z^2015
cho các số x,y,z thỏa mãn x+y+x=1 ; x^3+y^3+z^3 =1.Tính A=x^2015+y^2015+z^2015
cho x, y, z khác 0 và x+y+z khác 0 và 1/x+1/y+1/z=1/x+y+z .
chứng minh 1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
1. tìm GTNN của (x-1)^4+(x+3)^4
2. cho x,y,z là các số thực thỏa mãn: x+y+z=x^3+y^3+z^3=1
tình gt của A=x^2015+y^2015+z^2015
cho các số x,y,z thỏa mãn\(^{x+y+z=1,x^3+y^3+z^3=1}\).tính A=\(x^{2015}+y^{2015}+z^{2015}\)giúp mình với mnhf đang cần gấp.