a) CMR 20092008+20112010chia hết cho 2010
b) cho x,y,z là các ssoos lớn hơn hoặc bằng 1. CMR
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
GIÚP MÌNH GIẢI BÀI NÀY NHA MỌI NGƯỜI MAI MK PHẢI NỘP RỒI
Cho các số thực dương x,y,z thoả mãn: xyz = 1
CMR: \(\frac{1}{x+y+z}+\frac{1}{3}\ge\frac{2}{xy+yz+xz}\)
Cmr \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+xz\) với x,y,z>0
cho x,y,z là các số dương thỏa mãn x+y+z=3
Cmr \(\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+xz}\ge670\)
Cho xyz=1 . Tính P= \(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Cho x,y,z>0 và x+y+z=1.Tìm GTNN của biểu thức:P=\(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\)
a) Tìm giá trị nhỏ nhất của biểu thức: x - \(4\sqrt{x-2009}-2005\)
b) Tìm x, y, z biết: \(\frac{\sqrt{x-2009}-1}{x-2009}+\frac{\sqrt{y-2010}-1}{y-2010}+\frac{\sqrt{z-2011}-1}{z-2011}=\frac{3}{4}\)
Biết \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0 . Khi đó giá trị biểu thức A = \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\) là :
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)