DT

cho x+y+z=1.Tìm gtnn của biểu thức P=x^2+y^2+z^2

YN
19 tháng 6 2022 lúc 20:40

Áp dụng bất đẳng thức Bunhiacopxki, ta có:

\(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1x+1y+1z\right)^2=\left(x+y+z\right)^2=1\)

 

\(\Rightarrow P\ge\dfrac{1}{3}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)