Áp dụng bất đẳng thức Bunhiacopxki, ta có:
\(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1x+1y+1z\right)^2=\left(x+y+z\right)^2=1\)
\(\Rightarrow P\ge\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Đúng 1
Bình luận (0)