Cho x+y+z=1 (x,y,z>0)
\(\frac{350}{xy+xz+yz}+\frac{386}{x^2+y^2+z^2}>2015\)
Cho 3 số dương x,y,z thỏa mãn x + y + z = 1.Chứng minh rằng:
\(\frac{350}{xy+yz+zx}+\frac{386}{x^2+y^2+z^2}>2015\)
cho x,y,z >0 thỏa: x+y+z=1
cm:
\(\frac{350}{xy+yz+zx}+\frac{386}{x^2+y^2+z^2}>2015\)
Cho ba số dương x,y,z thoả mãn điều kiện x + y + z = 1.
Chứng minh rằng : \(\frac{350}{xy+yz+zx}+\frac{386}{x^2+y^2+z^2}>2015\)
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
cho \(x,y,z\in Z^+\)thoả mãn \(x^2+y^2+z^2=3\)
Chứng minh \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)
Cho x, y, z >0 thỏa x + y + z >= 3. Chứng minh rằng : \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
Cho x ; y; z là các số dương TM : xy + yz + xz = 670 CMR :
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Cho các số thực dương\(x^2+y^2+z^2=3\)
Chứng minh rằng : \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\ge xy+yz+xz\)