Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x;y;z>0. Chứng minh rằng: \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+y^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)\(\frac{1}{z^2}\)
Cho x,y,z>0 và xyz=1
Tìm GTNN của M=\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\)
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
Cho x,y,z>0 và x+y+z=3 .Tìm min \(A=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
cho x,y,z>0. x+y+z=3 TÌm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTNN của biểu thức P=
\(\sqrt{x-1}\) + \(2\sqrt{y-4}\) + \(3\sqrt{z-9}\)
Cho \(x\ge3,y\ge2,z\ge1\). CMR: \(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+zy\sqrt{x-3}}{xyz}\le\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Cho x;y;z>0; xyz=1.CMR:\(x\sqrt{y^2+2z^2}+y\sqrt{z^2+2x^2}+z\sqrt{x^2+2y^2}\ge3\sqrt{3}\)
Cho x,y,z,a,b,c>0.CMR:\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
Áp dụng bđt cosi nha!!! thank nhìu!! Sẽ tick cho bn nhanh và đúng nhất! :))))