TT

Cho x+y+z=0.

Chứng minh rằng : 2(x5 + y5 +z5)=5xyz(x2 + y2 + z2)

LH
18 tháng 8 2017 lúc 18:35

\(y+z=-x\)

\(\Leftrightarrow\left(y+z\right)^5=-x^5\)

\(\Leftrightarrow y^5+5y^4z+10y^3z^2+10y^2z^3+5yz^4+z^5+x^5=0\)

\(\Leftrightarrow x^5+y^5+z^5+5yz\left(y^3+2y^2z+2yz^2+z^3\right)=0\)

\(\Leftrightarrow x^5+y^5+z^5+5yz\left[\left(y+z\right)\left(y^2-yz-z^2\right)+2yz\left(y+z\right)\right]=0\)

\(\Leftrightarrow x^5+y^5+z^5+5yz\left(y+z\right)\left(y^2+yz+z^2\right)=0\)

\(\Leftrightarrow2\left(x^5+y^5+z^5\right)-5xyz\left[\left(y^2+2yz+z^2\right)+y^2+z^2\right]=0\)

\(\Leftrightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)(đpcm)

Bình luận (0)