DH

Cho x,y,z>0, x+y+z\(\ge3\). tìm gtnn

\(\dfrac{x^3}{y+z}+\dfrac{y^3}{x+z}+\dfrac{z^3}{x+y}\)

MY
26 tháng 7 2022 lúc 16:42

\(\Sigma\dfrac{x^3}{y+z}=\Sigma\dfrac{x^4}{xy+xz}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2.\sqrt{\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)}}=\dfrac{x^2+y^2+z^2}{2}\ge\dfrac{\left(x+y+z\right)^2}{2+2+2}\ge\dfrac{3^2}{6}=\dfrac{3}{2}\Rightarrow min=\dfrac{3}{2}\Leftrightarrow x=y=z=1\)

Bình luận (0)
TH
26 tháng 7 2022 lúc 16:55

- Đặt \(A=\dfrac{x^3}{y+z}+\dfrac{y^3}{z+x}+\dfrac{z^3}{x+y}\)

\(=\dfrac{x^4}{xy+xz}+\dfrac{y^4}{yz+yx}+\dfrac{z^4}{zx+zy}\)

- Áp dụng BĐT Caushy-Schwarz, ta có:

\(A=\dfrac{x^4}{xy+xz}+\dfrac{y^4}{yz+yx}+\dfrac{z^4}{zx+zy}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+xz+yz+yx+zx+zy}=\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(xy+yz+zx\right)}\left(1\right)\)- Mặt khác, ta có:

\(\left\{{}\begin{matrix}x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}\left(2\right)\\xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(3\right)\end{matrix}\right.\)

- Từ (1) , (2), (3) suy ra:

\(A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{\dfrac{\left(x+y+z\right)^4}{9}}{2.\dfrac{\left(x+y+z\right)^2}{3}}=\dfrac{\left(x+y+z\right)^2}{6}\ge\dfrac{3^2}{6}=\dfrac{3}{2}\)

- Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

- Vậy \(MinA=\dfrac{3}{2}\)

Bình luận (0)