Sao đang x, y, z lại sang a, b, c vậy
\(\frac{1}{a^2+b^2+c^2}+\frac{2018}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+ac+bc}+\frac{2017}{ab+ac+bc}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{2}{2ab+2ac+2bc}+\frac{2017}{ab+ac+bc}\ge\frac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\frac{2017}{\frac{\left(a+b+c\right)^2}{2}}=\frac{9}{3}+\frac{2017.2}{9}\)