Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

Cho x,y,z>0 và x+y+z=3 Tìm min:\(\frac{x^2}{y+3z}+\frac{y^{^2}}{z+3x}+\frac{z^2}{x+3y}\)

VC
4 tháng 10 2017 lúc 15:20

Áp dụng bất đẳng thức svác sơ ta có 

\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)

Bình luận (0)
H24
4 tháng 10 2017 lúc 15:24

Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)

Áp dụng bất đẳng thức Canchy Schwarz dạng Engel : 

\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)

Dấu " = " xảy ra khi x=y=z=1.

Bình luận (0)
ZZ
12 tháng 7 2020 lúc 10:59

Sử dụng AM - GM ta dễ có:

\(\frac{x^2}{y+3z}+\frac{y+3z}{16}\ge2\sqrt{\frac{x^2}{y+3z}\cdot\frac{y+3z}{16}}=\frac{x}{2}\)

Tương tự:

\(\frac{y^2}{z+3x}+\frac{z+3x}{16}\ge\frac{y}{2};\frac{z^2}{x+3y}+\frac{x+3y}{16}\ge\frac{z}{2}\)

Khi đó:

\(\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\ge\frac{x+y+z}{2}-\frac{x+y+z}{4}=\frac{x+y+z}{4}=\frac{3}{4}\)

Đẳng thức xảy ra tại x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DH
Xem chi tiết
VT
Xem chi tiết
DG
Xem chi tiết
AV
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
AM
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết