H24

Cho x,y,z>0 và x+y+z≤1. Tìm Min \(P=x^2+y^2+z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)

AH
23 tháng 8 2021 lúc 11:19

Lời giải:

Áp dụng BĐT Cô-si:

\(x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\)

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\geq \frac{1}{3}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2\geq \frac{1}{3}.(\frac{9}{x+y+z})^2=\frac{27}{(x+y+z)^2}\)

\(\Rightarrow P\geq \frac{(x+y+z)^2}{3}+\frac{27}{(x+y+z)^2}\)

Áp dụng BĐT Cô-si:

\(\frac{(x+y+z)^2}{3}+\frac{1}{3(x+y+z)^2}\geq \frac{2}{3}\)

\(\frac{80}{3(x+y+z)^2}\geq \frac{80}{3}\)

\(\Rightarrow P\geq \frac{2}{3}+\frac{80}{3}=\frac{82}{3}\)

Vậy $P_{\min}=\frac{82}{3}$ khi $x=y=z=\frac{1}{3}$

Bình luận (0)

Các câu hỏi tương tự
TV
Xem chi tiết
ND
Xem chi tiết
HN
Xem chi tiết
LK
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết