Cho x,y,z > 0 và \(xyz\ge1\)
CMR: \(\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{y^5+z^2+x^2}+\frac{z^5-z^2}{z^5+x^2+y^2}\ge0\)
Cho x,y,z>0 và xyz=1. Chứng minh rằng:
\(\frac{x}{y^4+2}+\frac{y}{z^4+2}+\frac{z}{x^4+2}\ge1\)
Cho x,y,z>0, xyz=1
CMR :
\(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
\(Cho\text{ }x,y,z>0\text{ và }x+y+z=1.CMR:\)
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{x^4+z^4}{x^3+z^3}\ge1\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
x;y;z>0. CMR: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)
Cho x,y,z dương thỏa mãn xyz=1.CMR :
1) A\(=\frac{1}{x^2+x+1}+\frac{1}{y^2+y+1}+\frac{1}{z^2+z+1}\ge1\)
2) B\(=\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(y+1\right)\left(y+2\right)}+\frac{1}{\left(z+1\right)\left(z+2\right)}\ge\frac{1}{2}\)
Cho x,y,z > 0 thỏa xy+yz+zx=xyz. Chứng minh:
\(\frac{x^4+y^4}{xy\left(x^3+y^3\right)}+\frac{y^4+z^4}{yz\left(y^3+z^3\right)}+\frac{z^4+x^4}{zx\left(z^3+x^3\right)}\ge1\)
cho xyz=1.CMR
\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(y+z\right)}\ge\frac{3}{2}\)