ND

Cho x,y,z>0 thỏa mãn x+y+z=1.CMR:\(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)

NL
21 tháng 3 2022 lúc 0:29

undefined

Bình luận (0)
BH
21 tháng 3 2022 lúc 9:19

từ đề bài ta có bất đẳng thức cần chứng minh tương đương: 

\(3+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{9}{4}\)

<=>\(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

ta có \(\dfrac{3}{4}+\dfrac{z}{x+y}+\dfrac{x}{y+z}+\dfrac{y}{x+z}\le\dfrac{3}{4}+\dfrac{z+y}{4x}+\dfrac{x+z}{4y}+\dfrac{x+y}{4z}=\dfrac{3}{4}+\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-\dfrac{3}{4}=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(đpcm\right)\)Dấu "=" xảy ra khi x=y=z=\(\dfrac{1}{3}\)

Bình luận (0)

Các câu hỏi tương tự
KG
Xem chi tiết
HT
Xem chi tiết
DH
Xem chi tiết
HN
Xem chi tiết
DH
Xem chi tiết
QT
Xem chi tiết
DH
Xem chi tiết
TP
Xem chi tiết
DH
Xem chi tiết