Cho x,y,z>0 t/ m x+y+z=3. Tìm min
\(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho x,y,z là các số thực dương t/m: x+y+z=3 . Tìm min BT \(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho x,y,z là các số thực dương t/m: x+y+z=3 . Tìm min BT \(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho \(\hept{\begin{cases}x,y,z>0\\x^2+y^2+z^2=3\end{cases}}\)
Tìm Min A=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
cho x,y,z >0 và x+y+z=3 .tìm min của
A= \(x^2+y^2+z^3\)
B= \(\frac{x}{y^3+xy}+\frac{y}{z^3+yz}+\frac{z}{x^3+xz}\)
C= \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Dũng Senpai
Cho x, y, z > 0 và \(x^2+y^2+z^2=3\)
Tìm min. \(P=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
1) cho x;y;z dương thỏa mãn x+y+z=2 .tìm min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
2) cho x;y;z là các số dương sao cho \(x+y+z\ge12\)
tìm min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Cho x, y, z>0 và x+y+z\(\ge\)1. tìm Min A =\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z+\frac{1}{z^2}}\)
Cho x,y,z thoả mãn \(x^2+y^2+z^2=3\)
Tìm min của \(A=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)