Lời giải:
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{8^2}{4x+3y+z}\)
\(\Leftrightarrow\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\ge\frac{64}{4x+3y+z}\)
Thiết lập tương tự với các phân thức còn lại:
\(\frac{4}{y}+\frac{3}{z}+\frac{1}{x}\ge\frac{64}{4y+3z+x}\)
\(\frac{4}{z}+\frac{3}{x}+\frac{1}{y}\ge\frac{64}{3x+y+4z}\)
Cộng theo vế: \(8\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge64\left(\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\right)\)
\(\Leftrightarrow\frac{1}{4x+3y+z}+\frac{1}{x+4y+3z}+\frac{1}{3x+y+4z}\le\frac{1}{8}\)
Vậy GT:N của biểu thức là \(\frac{1}{8}\) khi \(x=y=z=3\)