Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

DN

Cho x+y=z. Tìm min M = x^2 + y^2

LA
25 tháng 6 2016 lúc 9:48

Toán lớp 9

Bình luận (0)
H24
25 tháng 6 2016 lúc 9:43

→Tìm max: 
Ta có bđt sau với mọi x,y: xy ≤ (x² + y²)/2 (đẳng thức xảy ra khi x = y) 
kết hợp với giả thiết: x² + y² = 4 + xy ≤ 4 + (x² + y²)/2 
=> P ≤ 4 + P/2 
<=> P ≤ 8 
Max P = 8 xảy ra khi x = y và x² + y² - xy = 4 <=> x = y = 2 hoặc x = y = - 2 • 

→ Tìm min: 
P = x² + y² = 4 + xy 
+ Nếu xy ≥ 0 thì P ≥ 4 
+ Nếu xy < 0: không mất tính tổng quát giả sử x > 0; y < 0 
để tiện cho việc cm, đặt y = - z với z > 0 
Ta có: P/4 = (x² + y²)/4 = (x² + y²)/(x² + y² - xy) 
= 1 + xy/(x² + y² + xy) = 1 - zx/(x² + z² + zx) 
mặt khác: 
x² + z² ≥ 2zx 
=> x² + z² + zx ≥ 3zx 
=> zx/(x² + z² + zx) ≤ 1/3 (vì zx > 0) 
=> P/4 = 1 - zx/(x² + z² + zx) ≥ 1 - 1/3 = 2/3 
=> P ≥ 8/3 
Min P = 8/3 xảy ra khi z = x = - y; x² + y² - xy = 4 <=> x = 2/√3; y = -2/√3 hoặc x = -2/√3; y = 2/√3

Bình luận (3)

Các câu hỏi tương tự
DN
Xem chi tiết
DA
Xem chi tiết
AD
Xem chi tiết
AD
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
AD
Xem chi tiết
II
Xem chi tiết
NM
Xem chi tiết