cho x,y,z thuộc khoảng 0 đến 1 thỏa mãn x+y+z=0 cm a^2+b^2+c^2<=1+a^2b+b^2c+c^2a
cho a b c và x y z thỏa mãn a+b+c=1(1) a^2+b^2+c^2=1(2), x/a=y/b=z/c(3). Cm xy+yz+xz=0
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1) Xét a,b thuộc R (a,b>0) thỏa mãn a2+b2=2. Tìm Min P= a2/(b+1) + b2/(a+1).
2)Xét a,b thuộc R.Tìm Min P=(a+b)4/(a2+b2) +8/ab.
3) Xét a,b thuộc R là độ dài 3 cạnh tam giác thỏa mãn 3/(c+b-a)+4/(a+c-b)+5/(a+b-c)=12. Tìm Max 1/(a+c)+2/(a+b).
4) Cho x,y,z thuộc R,>0 thỏa mãn x2+y2+z2=3.Tính Min P = x3/(x+y2)+y3/(y+z2)+z3/(z+x2).
5) Cho a,b,c thuộc R,>0 thỏa mãn a+b+c=1.Tính Min P=a/(b+ac)+b/(c+ab)+c/(a+bc).
6) Cho a,b,c thuộc R thỏa mãn a+b+2c=6; a2+b2+2c2=10. Tìm Max D= ab+c2+7c.
Các bạn giúp mình với,mai nộp rồi mà còn nhiều bài khó quá T^T.
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
cho `x,y,z` khác `0` thỏa mãn `x + y/2 + z/3 = 1` và `1/x + 2/y + 3/z =0`. Chứng tỏ `A= x^2 + (y^2)/4 + (z^2)/9 =1`