IC

Cho x,y,z thỏa mãn x+y+z=3. GTLN của bieur thức P=\(xy+yz+zx\)

TN
14 tháng 1 2017 lúc 22:33

Từ \(\left(x-y\right)^2\ge0\Rightarrow x^2-2xy+y^2\ge0\Rightarrow x^2+y^2\ge2xy\Leftrightarrow2xy\le x^2+y^2\left("="\Leftrightarrow x=y\right)\)

Tương tự ta có: \(2yz\le y^2+z^2;2xz\le x^2+z^2\)

Cộng theo vế có: \(2xy+2yz+2xz\le2\left(x^2+y^2+z^2\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow xy+yz+xz+2yz+2xy+2xz\le x^2+y^2+z^2+2yz+2xy+2xz\)

\(\Rightarrow3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=9\)

\(\Rightarrow P\le3\). Dấu "=" xảy ra khi x=y=z=1

Bài này cay nghiệt thật ngay từ đầu ko cho x,y,z dương luôn cho nhanh (:|

Bình luận (0)
H24
15 tháng 1 2017 lúc 0:08

\(\hept{\begin{cases}x+y+z=1\\P=xy+yz+zx\end{cases}}\)

\(\Leftrightarrow2P=x\left(z+y\right)+y\left(x+z\right)+z\left(x+y\right)\\ \)

\(\Leftrightarrow2P=x\left(3-x\right)+y\left(3-y\right)+z\left(3-z\right)\)

\(\Leftrightarrow2P=\left(3x-x^2\right)+\left(3y-y^2\right)+\left(3z-z^2\right)\)

\(\Leftrightarrow2P=\left(x+y+z\right)+3-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2-2z+1\right)\)

\(\Leftrightarrow2P=3+3-\left[\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\right]\)\(\ge6\) Đẳng thức khi x=y=z=1

\(\Rightarrow P\ge\frac{6}{2}=3\)

GTNN (p)=3

Bình luận (0)
H24
15 tháng 1 2017 lúc 0:09

Ghi lộn dấu Đẳng thức <=

GTLN=3

Bình luận (0)
SC
10 tháng 3 2019 lúc 15:23

ichigo là bleach

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
TB
Xem chi tiết
DD
Xem chi tiết
LD
Xem chi tiết
DP
Xem chi tiết
ND
Xem chi tiết
PT
Xem chi tiết
TM
Xem chi tiết
DD
Xem chi tiết