Ta có : y2 = xy \(\Rightarrow\)x = y ( 1 )
x2 = yz hay x2 = xz \(\Rightarrow\)x = z ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)x = y = z
Vậy x = y = z
Ta có : y2 = xy \(\Rightarrow\)x = y ( 1 )
x2 = yz hay x2 = xz \(\Rightarrow\)x = z ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)x = y = z
Vậy x = y = z
Cho a; b; c; x; y; z và \(x^2-yz\ne0;y^2-xz\ne0;z^2-xy\ne0\) thỏa mãn \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\) . CMR \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
cho x,y,z khác 0 thỏa mãn xy/x+y=yz/y+z=xz/x+z
tính giá trị của M=\(\frac{x^2+y^2+z^2}{xy+xz+yz}\)
Cho x, y, z thỏa mãn: x/2 = y/3 = z/4 và xy + yz + zx = 104. Tìm x, y, z ?
Cho ba số x; y; z thỏa mãn : \(y\ne z\); \(x+y\ne z\) và \(z^2=2\left(xz+yz-xy\right)\)
CMR: \(\frac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\frac{x-z}{y-z}\)
cho ba số thực dương x,y,z thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
tính giá trị biểu thức \(M=\frac{x^2+y^2+z^2}{xy+yz+zx}\)
Cho x,y,z thỏa mãn : xy/x+y=12/7 ; yz/y+z=-6 ; zx/z+x=-4 Tìm x,y,z
cho a,b,c,x,y,z là các số thực khác 0 thỏa mãn: \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\). CMR:\(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)
Cho các số thực x, y, z \(\ne\)0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức \(M=\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Bài 1: Cho ba số x,y,z \(\ne0\)thỏa mãn\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)(với giả thiết các tỉ số đều có nghĩa). Tính giá trị biểu thức : A=\(\frac{xy+yz+zx}{x^2+y^2+z^2}\)