Ta có:
P=\(\left(X^2+y^2+z^2+2xyz\right)-\left(X^2+y^2+z^2+4xyz-xy-yz-xz\right)\) xz)
= 1-\(\left(x^2+y^2+z^2+4xyz-xy-yz-xz\right)\)
=> P \(\le\)1
Vậy MaxP=1
Ta có:
P=\(\left(X^2+y^2+z^2+2xyz\right)-\left(X^2+y^2+z^2+4xyz-xy-yz-xz\right)\) xz)
= 1-\(\left(x^2+y^2+z^2+4xyz-xy-yz-xz\right)\)
=> P \(\le\)1
Vậy MaxP=1
Cho x, y, z là các số thực không âm thỏa mãn điều kiện: \(x^2+y^2+z^2+2xyz=1\)
Tìm Max \(P=xy+yz+xz-2xyz\)
Cho x; y; z là các số thực dương thỏa mãn: \(x^2+y^2+z^2+2xyz=1\)
Tìm max của \(A=xy+yz+zx-xyz\)
Cho x,y,z dương thỏa mãn xy +yz+zx+2xyz =1 .Chứng minh :1/x+1/y+1/z >= 4*(x+y+z)
cho x,y,z dương thỏa mãn 1+x+y+z=2xyz
Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{xy}{1+x+y}+\frac{yz}{\frac{ }{ }1+y+z}+\frac{xz}{1+x+z}\) lúc đó giá trị của x,y,z là bao nhiêu
cho x,y ,z là 3 số dương thỏa mãn x +y +z = 2
tìm GTLN của xy , xz ,yz
cho x,y,z >0 thỏa mãn 5x^2+2xyz+4y^2+3z^2=60
tìm GTLN B= x+y+z
Cho ba số x,y,z ko âm thõa mãn x+y+z=1
Cmr : 0<= xy+yz+xz-2xyz<=\(\frac{7}{27}\)
Cho x,y,z là các số thực dương thoả mãn xy+yz+zx+2xyz=1. Chứng minh rằng : x+y+z>=3/2
Cho xy+yz+xz=2xyz (x,y,z>0). Tìm Max P= \(\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2z^2x^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)