Cho x,y,z>0 thỏa mãn xy+yz+xz=xyz. CMR :
\(\frac{xy}{z^3\left(1+x\right)\left(1+y\right)}+\frac{yz}{X^3\left(1+y\right)\left(1+z\right)}+\frac{xz}{y^3\left(1+z\right)\left(1+x\right)}\) lớn hơn hoặc bằng \(\frac{1}{16}\)
Help me ... Plzzz
cho 1/x +1/y +1/z=1. chứng minh; căn của (x+yz) + can của (y+xz) +can của (z+xy) lớn hơn hoặc bằng can của xyz+ căn x+ căn y + can z
Cho x;y;z > 0 và xy+yz+zx = 3 .
CMR : \(\frac{x^4+y^4}{x^2+y^2}+\frac{y^4+z^4}{y^2+z^2}+\frac{z^4+x^4}{z^2+x^2}\) lớn hơn hoặc bằng 3
x,y,z lớn hơn hoặc bằng 0 x+y+z+xyz=4
Max P=xy+yz+zx
Cho x+y+z=3 . Chứng minh bất đẳng thức
x2 +y2 +z2 +xy+xz+yz lớn hơn hoặc bằng 6
Cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=1\) . Chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)lớn hơn hoặc bằng căn 3
x,y,z lớn hơn hoặc bằng 0 \(x^3+y^3+z^3=3\)
Max A= 3(xy+yz+zx)-xyz
cho các số thực dương x,y,z thỏa mãn
x+y+z=4
chứng ninh rằng 1/xy +1/xz lớn hơn hoặc bằng 1
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z=2.CMR: (x^2/y+z)+(y^2/z+x)+(z^2/x+y) lớn hơn hoặc bằng 1