Cho x,y,z là các số dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2020\). Tìm giá trị lớn nhất của:
\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)
tìm nghiệm nguyên dương của pt:
\(\frac{x}{2x+y+z}+\frac{y}{2y+z+x}+\frac{z}{2z+x+y}=\frac{3}{4}\)
cho x,y,z là các số dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)chứng minh rằng
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
6 tick cho ai làm được bài này (3 like của tớ và của bạn tớ) và người đó chắc hản giỏi
Cho \(\frac{2x+2y-z}{z}=\frac{2x+2z-y}{y}=\frac{2z+2y-x}{x}\) (x ; y ; x là các số hữu tỉ dương)
Tính giá trị của biểu thức C = \(\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8xyz}\)
Cho x, y, z là các sốdương. Tìm \(S=\frac{x}{y+2z}+\frac{y}{z+2x}+\frac{z}{x+2y}.\)
cho x;y;z là các số thực dương thỏa mãn x+y+z=3xyz.Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{yz}{x^3\left(z+2y\right)}+\frac{zx}{y^3\left(x+2z\right)}+\frac{xy}{z^3\left(y+2x\right)}\)
Cho x,y,z là các số thực dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm max của \(P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
Cho các số dương x;y;z thỏa mãn \(xyz=1\) . Chứng minh rằng :
\(\frac{x^2y^2}{2x^2+y^2+3x^2y^2}+\frac{y^2z^2}{2y^2+z^2+3y^2z^2}+\frac{x^2z^2}{2z^2+x^2+3z^2x^2}\le\frac{1}{2}\)
Cho x , y , z > 0 thỏa mãn xyz = 1
Tìm GTLN: P = \(\frac{1}{x+2y+3}+\frac{1}{y+2z+3}+\frac{1}{z+2x+3}\)