Đặt \(\left\{{}\begin{matrix}2^x=a\\3^y=b\\4^z=c\end{matrix}\right.\) (với \(a;b;c>0\)) \(\Rightarrow a^2+b^2+c^2=a+b+c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2=\frac{3}{4}\)
Gọi \(M\left(a;b;c\right)\) thì M thuộc mặt cầu tâm \(I\left(\frac{1}{2};\frac{1}{2};\frac{1}{2}\right)\) bán kính \(R=\frac{\sqrt{3}}{2}\)
\(T=2^{x+1}+3^{y+1}+4^{z+1}=2.2^x+3.3^y+4.4^z=2a+3b+4c\)
\(\Rightarrow2a+3b+4c-T=0\)
Gọi (P) là mặt phẳng thay đổi có phương trình \(2x+3y+4z-T=0\)
\(\Rightarrow M\in\left(P\right)\Rightarrow M\) thuộc giao của mặt cầu và (P)
Mà mặt cầu giao với (P) khi và chỉ khi:
\(d\left(I;\left(P\right)\right)\le R\Leftrightarrow\frac{\left|2.\frac{1}{2}+3.\frac{1}{2}+4.\frac{1}{2}-T\right|}{\sqrt{2^2+3^2+4^2}}\le\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left|T-\frac{9}{2}\right|\le\frac{\sqrt{87}}{2}\) \(\Rightarrow\frac{-\sqrt{87}}{2}\le T-\frac{9}{2}\le\frac{\sqrt{87}}{2}\)
\(\Rightarrow T\le\frac{9+\sqrt{87}}{2}\)