Cho x,y,z là các số thực dương.Chứng minh:\(\frac{x3}{y^2}\)+\(\frac{y3}{z^2}\)+\(\frac{z^3}{x^2}\)\(\ge\)\(\frac{x^2}{y}\)+\(\frac{y^2}{z}\)+\(\frac{z^2}{x}\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
1) với x,y là số thực dương, tìm giá trị nhỏ nhất của biểu thức \(\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
2) cho x,y,z là các số thực lớn hơn -1. chứng minh \(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}\ge2\)
cho x,y,z là các số thực dương chứng minh rằng :
\(\frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\)
Giả sử x,y,z là 3 số thực dương thỏa mãn điều kiện x+y+z=xyz. Chứng minh rằng:
\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
Giải chi tiết hộ mình:
Cho x,y,z là 3 số dương.Chứng minh rằng
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy++yz+zx\)
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)