Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z là các số dương thỏa mãn điều kiện \(x+y+z\ge12\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z>= 12
tìm GTNN của A = \(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Cho x,y,z là các số dương thỏa mãn : \(x+y+z\ge12\)
Tìm giá trị nhỏ nhất của : \(P=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{y}+\sqrt{z}}+\frac{1}{\sqrt{z}+\sqrt{x}}=3\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3\sqrt{x}+3\sqrt{y}+2\sqrt{z}}+\frac{1}{3\sqrt{x}+2\sqrt{y}+3\sqrt{z}}+\frac{1}{2\sqrt{x}+3\sqrt{y}+3\sqrt{z}}\)
cho các số thực dương x;y;z thỏa mãn :\(\sqrt{x^2+y^2}\) +\(\sqrt{y^2+z^2}\)+\(\sqrt{z^2+x^2}\)=2015
tìm giá trị nhỏ nhất của biểu thức : T=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho các số thực dương x,y thỏa mãn: \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2017.\)
Timg giá trị nhỏ nhất của biểu thức: \(T=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z là các số thực dương và thỏa mãn điều kiện x+y+z=xyz. Tìm giá thị lớn nhất của:
\(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1 +z^2}}\)